Métodos Matemáticos de Bioingeniería Grado en Ingeniería Biomédica

Lecture 6

Marius A. Marinescu

Departamento de Teoría de la Señal y Comunicaciones Área de Estadística e Investigación Operativa Universidad Rey Juan Carlos

15 de marzo de 2021

Outline

1 The Derivative - Section 2.3

- Partial derivatives
- Differenciability
- Matrix notation and differentiability in \mathbb{R}^n

Partial derivatives

Outline

1 The Derivative - Section 2.3

- Partial derivatives
- Differenciability
- Matrix notation and differentiability in \mathbb{R}^n

Partial derivatives

Derivative of a scalar-valued function of one variable

- Let $F : X \subseteq \mathbb{R} \to \mathbb{R}$ be a scalar-valued function of one variable.
- The derivative of F at a number $a \in X$ is

$$F'(a) = \lim_{h \to 0} \frac{F(a+h) - F(a)}{h}$$

F is said to be **differentiable** at a when the limit in this equation exists

Partial derivatives

Definition 3.1: Partial Function

- Suppose $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is a scalar-valued function of n variables.
- Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ denote a point of \mathbb{R}^n .
- A partial function *F* with respect to the variable *x_i* is a one-variable function obtained from *f* by holding all variables constant except *x_i*.
- That is, we set x_j equal to a constant a_j for $j \neq i$.
- Then the partial function in x_i is defined by

$$F(x_i) = f(a_1, a_2, \ldots, x_i, \ldots, a_n)$$

Remark

- We usually do not replace the x_j 's $(j \neq i)$ by constants.
- Instead, we make a mental note.

Partial derivatives

Example 1

• Consider the function

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

• Then the partial functions with respect to x are given by

$$F(x) = f(x, a_2) = \frac{x^2 - a_2^2}{x^2 + a_2^2}$$

where a_2 may be any constant.

• If, for example, $a_2 = 0$, then the partial function is

$$F(x) = f(x,0) = \frac{x^2}{x^2} \equiv 1$$

Partial derivatives

Example 1

• Consider the function

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

• Then the partial functions with respect to x are given by

$$F(x) = f(x,0) = \frac{x^2}{x^2} \equiv 1$$

- Geometrically, this partial function is the restriction of f to the horizontal line y = 0.
- Since the origin is not in the domain of *f*, value 0 should not be taken to be in the domain of *F*.

Partial derivatives

Example 1

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

$$F(x) = f(x,a_2) = \frac{x^2 - a_2^2}{x^2 + a_2^2}$$

- The function f is defined on $\mathbb{R}^2 \{(0,0)\}$
- Its partial function F is defined on the x-axis minus the origin.

Partial derivatives

or

Definition 2.2: Partial Derivative

- The partial derivative of f with respect to x_i is the (ordinary) derivative of the partial function with respect to x_i.
- In the notation of Definition 3.1, partial derivative with respect to x_i is

 $F'(x_i)$

• **Standard notations** for the partial derivative of *f* with respect to *x_i* are:

$$\frac{\partial f(x_1, \dots, x_n)}{\partial x_i}, \quad D_{x_i} f(x_1, \dots, x_n) \quad \text{and} \quad f_{x_i}(x_1, \dots, x_n)$$
$$\frac{\partial f}{\partial x_i}, \quad D_{x_i} f \quad \text{and} \quad f_{x_i}$$

Partial derivatives

Definition 2.2: Analytic and Geometric interpretation

• Symbolically, we have

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_n)}{h}$$

- The partial derivative is the (instantaneous) rate of change of *f* when all variables, except the specified one, are held fixed.
- In the case where *f* is a (scalar-valued) function of two variables we can consider,

$$rac{\partial f}{\partial x}(a,b)$$
 and $rac{\partial f}{\partial y}(a,b)$

Partial derivatives

Geometric Interpretation of Partial Derivatives in \mathbb{R}^2

 $\frac{\partial f}{\partial x}(a,b)$

- Geometrically it is the slope at the point (a, b, f(a, b)) of the curve obtained by intersecting
 - The surface z = f(x, y) with
 - The plane y = b

Partial derivatives

Geometric Interpretation of Partial Derivatives in \mathbb{R}^2

 $\frac{\partial f}{\partial y}(a,b)$

- Geometrically it is the slope at the point (a, b, f(a, b)) of the curve obtained by intersecting
 - The surface z = f(x, y) with
 - The plane x = a

Partial derivatives

Example 2a

Let

$$f(x,y) = x^2y + \cos(x+y)$$

• Then, if we imagine y to be a constant throughout the differentiation process, we have,

$$\frac{\partial f}{\partial x} = 2xy - \sin(x+y)$$

• If we imagine x to be a constant,

$$\frac{\partial f}{\partial y} = x^2 - \sin(x + y)$$

Partial derivatives

Example 2b

Let

$$g(x,y) = \frac{xy}{(x^2 + y^2)}$$

Then

$$g_{x}(x,y) = \frac{(x^{2}+y^{2})y - xy(2x)}{(x^{2}+y^{2})^{2}} = \frac{y(y^{2}-x^{2})}{(x^{2}+y^{2})^{2}}$$
$$g_{y}(x,y) = \frac{(x^{2}+y^{2})x - xy(2y)}{(x^{2}+y^{2})^{2}} = \frac{x(x^{2}-y^{2})}{(x^{2}+y^{2})^{2}}$$

• Note that neither g nor its partial derivatives are defined at point (0,0).

Partial derivatives

Example 3

- Occasionally, it is necessary to appeal explicitly to limits to evaluate partial derivatives.
- Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is defined by

$$f(x,y) = \begin{cases} \frac{3x^2y - y^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

1. For $(\mathbf{x}, \mathbf{y}) \neq (\mathbf{0}, \mathbf{0})$, we have

$$\frac{\partial f}{\partial x} = \frac{8xy^3}{(x^2 + y^2)^2}$$
$$\frac{\partial f}{\partial y} = \frac{3x^4 - 6x^2y^2 - y^4}{(x^2 + y^2)^2}$$

Partial derivatives

Example 3

- Occasionally, it is necessary to appeal explicitly to limits to evaluate partial derivatives:
- Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is defined by

$$f(x,y) = \begin{cases} \frac{3x^2y - y^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

2. For (x, y) = (0, 0), we return to Definition 3.2

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{-h-0}{h} = \lim_{h \to 0} -1 = -1$$

Differenciability

Outline

1 The Derivative - Section 2.3

- Partial derivatives
- Differenciability
- Matrix notation and differentiability in \mathbb{R}^n

Tangency for scalar-valued functions of one variable

- Let $F : X \subseteq \mathbb{R} \to \mathbb{R}$ be a scalar-valued function of one variable.
- F is differentiable at a number $a \in X$ if the graph of the curve y = F(x) has a tangent line at the point (a, F(a)).

• This tangent line is given by the equation:

$$y = F(a) + F'(a)(x - a)$$

Differenciability

Tangency for scalar-valued functions of one variable

$$y = F(a) + F'(a)(x - a)$$

• If we define the function H(x) to be

$$H(x) = F(a) + F'(a)(x - a)$$

• Then H has two properties:

1. H(a) = F(a) The line defined by y = H(x)passes through the point (a, F(a)) Differenciability

Tangency for scalar-valued functions of one variable

$$y = F(a) + F'(a)(x - a)$$

• If we define the function H(x) to be

$$H(x) = F(a) + F'(a)(x-a)$$

• Then H has two properties:

Tangency for scalar-valued functions of two variables

- Suppose $f : X \subseteq \mathbb{R}^2 \to \mathbb{R}$ is a scalar-valued function of two variables.
- Suppose X is open in \mathbb{R}^2 so the graph of f is a surface.
- What should the tangent plane to the graph of z = f(x, y) at the point (a, b, f(a, b)) be ?

Tangency for scalar-valued functions of two variables

1. The partial derivative $f_x(a, b)$ is the slope of the line tangent at the point (a, b, f(a, b)) to the curve obtained by intersecting the surface z = f(x, y) with the plane y = b

• If we travel along this tangent line, then for every unit change in the positive x-direction, there is a change of $f_x(a, b)$ units in the z-direction.

Tangency for scalar-valued functions of two variables

1. The partial derivative $f_x(a, b)$ is the slope of the line tangent at the point (a, b, f(a, b)) to the curve obtained by intersecting the surface z = f(x, y) with the plane y = b

• The tangent line is given in vector parametric form as:

$$\mathbf{I}_1(t) = (a, b, f(a, b)) + t(1, 0, f_x(a, b))$$

Tangency for scalar-valued functions of two variables

1. The partial derivative $f_x(a, b)$ is the slope of the line tangent at the point (a, b, f(a, b)) to the curve obtained by intersecting the surface z = f(x, y) with the plane y = b

• Thus, a vector parallel to this tangent line is

$$\mathbf{u}=\mathbf{i}+f_{x}(a,b)\mathbf{k}$$

Tangency for scalar-valued functions of two variables

2. Analogously, the partial derivative $f_y(a, b)$ is the slope of the line tangent at the point (a, b, f(a, b)) to the curve obtained by intersecting the surface z = f(x, y) with the plane x = a.

• If we travel along this tangent line, then for every unit change in the positive y-direction, there is a change of $f_y(a, b)$ units in the z-direction.

Tangency for scalar-valued functions of two variables

2. The partial derivative $f_y(a, b)$ is the slope of the line tangent at the point (a, b, f(a, b)) to the curve obtained by intersecting the surface z = f(x, y) with the plane x = a.

• The tangent line is given in vector parametric form as:

$${\sf I}_2(t)=(a,b,f(a,b))+t(0,1,f_y(a,b))$$

Tangency for scalar-valued functions of two variables

2. The partial derivative $f_y(a, b)$ is the slope of the line tangent at the point (a, b, f(a, b)) to the curve obtained by intersecting the surface z = f(x, y) with the plane x = a

• Thus, a vector parallel to this tangent line is:

$$\mathbf{v} = \mathbf{j} + f_y(a, b)\mathbf{k}$$

Differenciability

Tangency for scalar-valued functions of two variables

$$\begin{aligned} \mathbf{I}_1(t) &= (a, b, f(a, b)) + t(1, 0, f_x(a, b)), & \mathbf{u} = \mathbf{i} + f_x(a, b) \mathbf{k} \\ \mathbf{I}_2(t) &= (a, b, f(a, b)) + t(0, 1, f_y(a, b)), & \mathbf{v} = \mathbf{j} + f_y(a, b) \mathbf{k} \end{aligned}$$

- Both of the tangent lines must be contained in the plane tangent to z = f(x, y) at (a, b, f(a, b)), if one exists.
- A vector **n** normal to the tangent plane must be perpendicular to both **u** and **v**.

Differenciability

Tangency for scalar-valued functions of two variables

 $\begin{aligned} & \mathbf{l}_1(t) &= (a, b, f(a, b)) + t(1, 0, f_x(a, b)), & \mathbf{u} = \mathbf{i} + f_x(a, b) \mathbf{k} \\ & \mathbf{l}_2(t) &= (a, b, f(a, b)) + t(0, 1, f_y(a, b)), & \mathbf{v} = \mathbf{j} + f_y(a, b) \mathbf{k} \end{aligned}$

- A vector n normal to the tangent plane must be perpendicular to both \boldsymbol{u} and \boldsymbol{v}
- Therefore, we may take **n** to be:

$$\mathbf{n} = \mathbf{u} \times \mathbf{v} = -f_x(a, b)\mathbf{i} - f_y(a, b)\mathbf{j} + \mathbf{k}$$

Tangency for scalar-valued functions of two variables

We have the normal vector and a point of the tangent plane.

$$\mathbf{n} = \mathbf{u} \times \mathbf{v} = -f_x(a,b)\mathbf{i} - f_y(a,b)\mathbf{j} + \mathbf{k}; \quad P = (a,b,f(a,b))$$

So, the equation for the tangent plane through (a, b, f(a, b)) with normal n is

$$(-f_x(a,b),-f_y(a,b),1)\cdot(x-a,y-b,z-f(a,b))=0$$

or

$$-f_x(a,b)(x-a) - f_y(a,b)(y-b) + z - f(a,b) = 0$$

Differenciability

Theorem 3.3

• If the graph of z = f(x, y) has a tangent plane at (a, b, f(a, b)) then that tangent plane has equation

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

• Let define the function h(x, y) to be

$$h(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

• Then *h* has the following properties

1.
$$h(a, b) = f(a, b)$$

The values of h and f are the same at (a, b)

2.
$$\frac{\partial h}{\partial x}(a, b) = \frac{\partial f}{\partial x}(a, b)$$
 and $\frac{\partial h}{\partial y}(a, b) = \frac{\partial f}{\partial y}(a, b)$
Partial derivatives of h and f
are the same at (a, b)

Definition 3.4: Differentiability

- Let X be open in \mathbb{R}^2 .
- Let $f: X \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a scalar-valued function of two variables.
- We say that f is differentiable at $(a, b) \in X$ if
 - The partial derivatives $f_x(a, b)$ and $f_y(a, b)$ exist , and
 - The function

$$h(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is a good linear approximation to f near (a, b):

$$\lim_{(x,y)\to(a,b)}\frac{f(x,y)-h(x,y)}{\|(x,y)-(a,b)\|}=0$$

Definition 3.4: Differentiability

• Mathematically is not necessary to suppose the partial derivatives exists. It is enough to say that *f* is differentiable if exists a **linear function** *h* that:

$$\lim_{(x,y)\to(a,b)}\frac{f(x,y)-h(x,y)}{\|(x,y)-(a,b)\|}=0$$

If f is differentiable at (a, b), then the equation z = h(x, y) defines the tangent plane to the graph of f at the point (a, b, f(a, b)).

If f is differentiable at all points of its domain, then we say that f is **differentiable**

The limit condition can be difficult to apply in practice. Hence, this theorem could be useful.

Theorem 3.5

- Suppose X is open in \mathbb{R}^2 .
- If f : X ⊆ ℝ² → ℝ has continuous partial derivatives in a neighbourhood of (a, b) in X, then f is differentiable at (a, b).

Example 6

- Let $f(x, y) = x^2 + 2y^2$
- Then

$$\frac{\partial f}{\partial x} = 2x$$
 and $\frac{\partial f}{\partial y} = 4y$

Differenciability

Example 6

• Let
$$f(x, y) = x^2 + 2y^2$$

- Thus, Theorem 3.5 implies that f is differentiable everywhere.
- The surface $z = x^2 + 2y^2$ must have a tangent plane at every point ,
- At the point (2, -1), for example, this tangent plane is given by the equation:

$$z = 6 + 4(x - 2) - 4(y + 1)$$
 or $4x - 4y - z = 6$

Differenciability

Example 6

• Let
$$f(x, y) = x^2 + 2y^2$$

• At the point (2, -1), for example, this tangent plane is

$$z = 6 + 4(x - 2) - 4(y + 1)$$
 or $4x - 4y - z = 6$

Differenciability

Theorem 3.6

If f : X ⊆ ℝ² → ℝ is differentiable at (a, b), then it is continuous at (a, b).

Example 7

• Let the function $f: X \subseteq \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^4 + y^4} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

• The function f is not continuous at the origin, since

$$\lim_{(x,y)\to(0,0)} f(x,y) \quad \text{does not exist}$$

- However, f is continuous everywhere else in \mathbb{R}^2 .
- By Theorem 3.6, f cannot be differentiable at the origin.

Differenciability

Theorem 3.6

If f : X ⊆ ℝ² → ℝ is differentiable at (a, b), then it is continuous at (a, b)

Example 7

$$f(x,y) = \begin{cases} \frac{x^2 y^2}{x^4 + y^4} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

• Nonetheless, the partial derivatives of *f* do exist at the origin since the partial functions are constant

$$f(x,0) = \frac{0}{x^4 + 0} \equiv 0 \Rightarrow \frac{\partial f}{\partial x}(0,0) = 0$$

$$f(0,y) = \frac{0}{0 + y^4} \equiv 0 \Rightarrow \frac{\partial f}{\partial y}(0,0) = 0$$

The existence of partial derivatives alone is not enough

Differenciability

Differentiation Remarks

We have the following hierarchy:

Continuous partials ⇒ Differentiable ⇒ Continuous function and Partials exist (but not necessary continuous)

The inverse implications doesn't follow. To prove it you can take this example for the first:

$$f(x) = x^2 \sin(1/x), f(0) = 0.$$

And for the second:

$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}, \ f(0,0) = 0$$

(continuous function).

Matrix notation and differentiability in \mathbb{R}^n

Outline

1 The Derivative - Section 2.3

- Partial derivatives
- Differenciability
- Matrix notation and differentiability in \mathbb{R}^n

Generalisation of scalar-valued function in \mathbb{R}^n

- Let X be open in \mathbb{R}^n .
- Let $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ be a scalar-valued function.
- Let $\mathbf{a} = (a_1, a_2, ..., a_n) \in X$.
- We say that f is differentiable at a if
 - All the partial derivatives $f_{x_i}(a), i = 1, ..., n$, exist, and
 - The function $h: \mathbb{R}^n \to \mathbb{R}$ defined by

$$h(\mathbf{x}) = f(\mathbf{a}) + f_{x_1}(\mathbf{a})(x_1 - a_1) + f_{x_2}(\mathbf{a})(x_2 - a_2) + \cdots + f_{x_n}(\mathbf{a})(x_n - a_n)$$

is a good linear approximation to f near \mathbf{a}

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{f(\mathbf{x})-h(\mathbf{x})}{\|\mathbf{x}-\mathbf{a}\|}=0$$

Matrix Notation and Gradient

- Let $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ be a scalar-valued function.
- We define the gradient of f to be the vector ,

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$$

Consequently,

$$\nabla f(\mathbf{a}) = (f_{x_1}(\mathbf{a}), f_{x_2}(\mathbf{a}), \dots, f_{x_n}(\mathbf{a}))$$

• Alternatively, we can use matrix notation and define the derivative of *f* at **a**.

The **derivative** of f at \mathbf{a} , $Df(\mathbf{a})$, is the row matrix whose entries are the components of $\nabla f(\mathbf{a})$

Matrix notation and differentiability in \mathbb{R}^n

Matrix Notation and Gradient

• Hence, vector notation allows us to rewrite equation

$$h(\mathbf{x}) = f(\mathbf{a}) + f_{x_1}(\mathbf{a})(x_1 - a_1) + f_{x_2}(\mathbf{a})(x_2 - a_2) + \dots + f_{x_n}(\mathbf{a})(x_n - a_n)$$

Compactly

$$h(\mathbf{x}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a})$$

• Thus, to say that *h* is a good linear approximation to *f* near **a** means that

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{f(\mathbf{x})-[f(\mathbf{a})+\nabla f(\mathbf{a})\cdot(\mathbf{x}-\mathbf{a})]}{\|(\mathbf{x}-\mathbf{a})\|}=0$$

Matrix of partial derivatives for vector-valued functions

- Let X be open in \mathbb{R}^n .
- Let $\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a vector-valued function of n variables.
- We define the matrix of partial derivatives of \mathbf{f} , denoted $D\mathbf{f}$ and called the **Jacobian Matrix**. This is the $m \times n$ matrix whose *ij*th entry is: ∂f_i

$$\frac{\partial x_j}{\partial x_j}$$

where $f_i : X \subseteq \mathbb{R}^n \to \mathbb{R}$ is the *i*th component function of **f**.

$$D\mathbf{f}(x_1, x_2, \dots, x_n) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Matrix of partial derivatives for vector-valued functions

$$D\mathbf{f}(x_1, x_2, \dots, x_n) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

- The *i*th row of *D***f** is nothing more than *Df*_{*i*}.
- The entries of Df_i are precisely the components of the gradient vector ∇f_i .
- In the case where m = 1, ∇f and Df mean exactly the same thing.

Matrix notation and differentiability in \mathbb{R}^n

Example 9

$$\bullet$$
 Suppose $f:\mathbb{R}^3\to\mathbb{R}^2$ is given by

$$\mathbf{f}(x,y,z) = (x\cos y + z, xy)$$

• Then we have,

$$\mathbf{f}(x, y, z) = (f_1(x, y, z), f_2(x, y, z))$$

where,

$$f_1(x, y, z) = x \cos y + z$$

$$f_2(x, y, z) = xy$$

• Thus,

$$D\mathbf{f}(x, y, z) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \end{bmatrix} = \begin{bmatrix} \cos y & -x \sin y & 1 \\ y & x & 0 \end{bmatrix}$$

Definition 3.8: Grand Definition of Differentiability

- Let X be open in \mathbb{R}^n and let $\mathbf{a} \in X$
- Let $\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$
- We say that **f** is differentiable at **a** if
 - Df(a) exists, and
 - The function $\mathbf{h}:\mathbb{R}^n \to \mathbb{R}^m$ defined by

$$\mathbf{h}(\mathbf{x}) = \mathbf{f}(\mathbf{a}) + D\mathbf{f}(\mathbf{a})(\mathbf{x} - \mathbf{a})$$

is a good linear approximation to **f** near **a** $\lim_{x \to a} \frac{\|\mathbf{f}(\mathbf{x}) - \mathbf{h}(\mathbf{x})\|}{\|\mathbf{x} - \mathbf{a}\|} = \lim_{x \to a} \frac{\|\mathbf{f}(\mathbf{x}) - [\mathbf{f}(\mathbf{a}) + D\mathbf{f}(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a})]\|}{\|(\mathbf{x} - \mathbf{a})\|} = 0$

 The term Df(a)(x – a) should be interpreted as the product of the m × n matrix Df(a) and the n × 1 column matrix

$$\begin{bmatrix} x_1-a_1 & x_2-a_2 & \cdots & x_n-a_n \end{bmatrix}^T$$

Theorem 3.9

If $\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at \mathbf{a} , then it is continuous at a.

Theorem 3.10

- Suppose $\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$ such that, for $i = 1, \dots, m$ and i = 1, ..., n, all $\frac{\partial f_i}{\partial x_i}$

- Exist, and
- Are continuous in a neighbourhood of **a** in X
- Then, **f** is differentiable at **a**.

Theorem 3.11

A function $\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\mathbf{a} \in X$

(in the sense of Definition 3.8)

if and only if

Each of its component functions $f_i: X \subseteq \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$, is differentiable at **a**

(in the sense of Definition 3.7)

Matrix notation and differentiability in \mathbb{R}^n

Example 10

 $\bullet~\mbox{Suppose}~{\bf g}: \mathbb{R}^3 - \{(0,0,0)\} \rightarrow \mathbb{R}^3 \mbox{ is given by }$

$$\mathbf{g}(x,y,z) = \left(\frac{3}{x^2 + y^2 + z^2}, xy, xz\right)$$

• Then we have

$$\mathbf{g}(x, y, z) = (g_1(x, y, z), g_2(x, y, z), g_3(x, y, z))$$

where

$$g_1(x, y, z) = \frac{3}{x^2 + y^2 + z^2}$$

 $g_2(x, y, z) = xy$
 $g_3(x, y, z) = xz$

2

Matrix notation and differentiability in \mathbb{R}^n

Example 10

$$g(x, y, z) = \left(\frac{3}{x^2 + y^2 + z^2}, xy, xz\right)$$

$$g_1(x, y, z) = \frac{3}{x^2 + y^2 + z^2}$$

$$g_2(x, y, z) = xy$$

$$g_3(x, y, z) = xz$$

• Thus

$$D\mathbf{g}(x,y,z) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial z} \end{bmatrix} = \begin{bmatrix} \frac{-6x}{(x^2+y^2+z^2)^2} & \frac{-6z}{(x^2+y^2+z^2)^2} \\ y & x & 0 \\ z & 0 & x \end{bmatrix}$$

Example 10

$$D\mathbf{g}(x, y, z) = \begin{bmatrix} \frac{-6x}{(x^2 + y^2 + z^2)^2} & \frac{-6y}{(x^2 + y^2 + z^2)^2} & \frac{-6z}{(x^2 + y^2 + z^2)^2} \\ y & x & 0 \\ z & 0 & x \end{bmatrix}$$

- Each of the entries of this matrix is continuous over $\mathbb{R}^3 \{(0,0,0)\}$
- Hence, by Theorem 3.10, **g** is differentiable over its entire domain.