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Partial derivatives

Derivative of a scalar-valued function of one variable

@ Let F: X CR — R be a scalar-valued function of one
variable.

@ The derivative of F at a number a € X is

Fl(a) = A'I_TO F(a+ h/)7— F(a)

F is said to be differentiable at a
when the limit in this equation exists
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Partial derivatives

Definition 3.1: Partial Function

@ Suppose f : X CR" — R is a scalar-valued function of n
variables.

o Let x = (x1,x2,...,x%,) denote a point of R".

@ A partial function F with respect to the variable x; is a
one-variable function obtained from f by holding all variables
constant except x;.

@ That is, we set x; equal to a constant a; for j # .

@ Then the partial function in x; is defined by

F(X,') = f(al,az,...,x,-, 0o .,a,,)

e We usually do not replace the x;'s (j # i) by constants.

@ Instead, we make a mental note.
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Partial derivatives

Example 1

@ Consider the function

X2 — y2

f(X7Y): m

@ Then the partial functions with respect to x are given by

x? — a3
F(X) - f(Xa 32) = X2 s ag
2

where a; may be any constant.

o If, for example, a, = 0, then the partial function is

X2
”
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Partial derivatives

Example 1

@ Consider the function

X2 — y2

f(X7Y) = m

@ Then the partial functions with respect to x are given by

N

F(x)=f(x,0)=—= =1

X

@ Geometrically, this partial function is the restriction of f to
the horizontal line y = 0.

@ Since the origin is not in the domain of f, value 0 should not
be taken to be in the domain of F.
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Partial derivatives

Example 1

x2——y2
f(X,}’) = m
X2 _ 2
F(X) = f(X,a2) = )(27—"—‘32

o The function f is defined on R? — {(0,0)}

@ Its partial function F is defined on the x-axis minus the origin.

Domain of f

Domain of F
(restriction

of f)
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Partial derivatives

Definition 2.2: Partial Derivative

@ The partial derivative of f with respect to x; is the (ordinary)
derivative of the partial function with respect to x;.

@ In the notation of Definition 3.1, partial derivative with
respect to x; is

F'(x;)

e Standard notations for the partial derivative of f with
respect to x; are:

Of (X1, ..., Xn)
— Dy f(x1,...,xn) and f.(x1,...,xn)
I
°r of
57 DXi f and in
1
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Partial derivatives

Definition 2.2: Analytic and Geometric interpretation

@ Symbolically, we have

. f(xa, ey xi+hy oo xn) — Fxa, .0 Xn)
im
8X,' h—0 h

@ The partial derivative is the (instantaneous) rate of change of
f when all variables, except the specified one, are held fixed.

@ In the case where f is a (scalar-valued) function of two
variables we can consider,

of

15)

of
a,b) and —(a,b
(a,) 5, (2:0)
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Partial derivatives

Geometric Interpretation of Partial Derivatives in R?

of

E;;(a7b)

e Geometrically it is the slope at the point (a, b, f(a, b)) of the
curve obtained by intersecting

o The surface z = f(x, y) with
o The plane y = b

X
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Partial derivatives

Geometric Interpretation of Partial Derivatives in R?
of
—(a, b
5,:0)

e Geometrically it is the slope at the point (a, b, f(a, b)) of the
curve obtained by intersecting

o The surface z = f(x, y) with
o The plane x = a
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Partial derivatives

Example 2a

o Let
f(x,y) = x2y + cos(x + y)

@ Then, if we imagine y to be a constant throughout the
differentiation process, we have,

of :
I 2xy —sin(x +y)

o If we imagine x to be a constant,

of 5, .
— =x" —sin(x +y)
dy
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Partial derivatives

Example 2b

o Let
(x,y) = 2
g (x* +y?)
@ Then
alxy) = (2 +y2)y —xy(2x) _ y(y* = x%)
o (< +y?)? (< +y?)?
o (y) = (2 +y2)x —xy(2y) _ x(>x* = y?)
y (x2 1 y2)2 (x2 + y2)2
@ Note that neither g nor its partial derivatives are defined at
point (0,0).
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Partial derivatives

Example 3

@ Occasionally, it is necessary to appeal explicitly to limits to
evaluate partial derivatives.

@ Suppose f : R? — R is defined by
BEF i (xy)#(0,0)

floy) = {ox R (x,y) = (0,0

1. For (x,y) # (0,0), we have

of 8xy3
ox  (x2+y2)2
of 3x* — 6x%y?% — y*
by ~ Pty
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Partial derivatives

Example 3

@ Occasionally, it is necessary to appeal explicitly to limits to
evaluate partial derivatives:

@ Suppose f : R? — R is defined by

fxy) = {%ﬁgf i (x,y) # (0,0)

0 if (x,y)=1(0,0)

2. For (x,y) = (0,0), we return to Definition 3.2

of f(0+h,0)—f(070) , 0-0

ox ax (0= hﬁO h hTO h g

of f(0,04 h)—-f(0,0) . —h—-0 B
ay(o 0)_/|7|—>0 h _/lvlno h _ilyino_l__l
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Differenciability

Tangency for scalar-valued functions of one variable
@ Let F: X CR — R be a scalar-valued function of one
variable.
@ F is differentiable at a number a € X if the graph of the curve
y = F(x) has a tangent line at the point (a, F(a)).

y

N (0. F(@)
yan V

@ This tangent line is given by the equation:

y = F(a) + F'(a)(x — a)
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Differenciability

Tangency for scalar-valued functions of one variable

y

(a, F(a))
yal \%

y = F(a) + F'(a)(x — a)
o If we define the function H(x) to be
H(x) = F(a) + F'(a)(x — a)

@ Then H has two properties:

1. H(a) = F(a)  The line defined by y = H(x)
passes through the point (a, F(a))
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Differenciability

Tangency for scalar-valued functions of one variable

y

/_ (a, F(a))

y =F(a)+ F'(a)(x — a)
o If we define the function H(x) to be
H(x) = F(a) + F'(a)(x — a)
@ Then H has two properties:
2. H'(a) = F'(a)

the line defined by y = H(x) has the same slope at (a, F(a))
as the curve defined by y = F(x)
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Differenciability

Tangency for scalar-valued functions of two variables

@ Suppose f : X C R? — R is a scalar-valued function of two
variables.

@ Suppose X is open in R? so the graph of f is a surface.

@ What should the tangent plane to the graph of z = f(x, y) at
the point (a, b, f(a, b)) be ?

(a,b,f(a, b))

z >
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Differenciability

Tangency for scalar-valued functions of two variables

1. The partial derivative f,(a, b) is the slope of the line tangent
at the point (a, b, f(a, b)) to the curve obtained by
intersecting the surface z = f(x, y) with the plane y = b

o If we travel along this tangent line, then for every unit change
in the positive x-direction, there is a change of f,(a, b) units
in the z-direction.
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Differenciability

Tangency for scalar-valued functions of two variables

1. The partial derivative f,(a, b) is the slope of the line tangent
at the point (a, b, f(a, b)) to the curve obtained by
intersecting the surface z = f(x, y) with the plane y = b

@ The tangent line is given in vector parametric form as:

l1(t) = (a, b, f(a, b)) + t(1,0, fi(a, b))
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Differenciability

Tangency for scalar-valued functions of two variables

1. The partial derivative f,(a, b) is the slope of the line tangent
at the point (a, b, f(a, b)) to the curve obtained by
intersecting the surface z = f(x, y) with the plane y = b

@ Thus, a vector parallel to this tangent line is

u=i+f(a, bk
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Differenciability

Tangency for scalar-valued functions of two variables

2. Analogously, the partial derivative f,(a, b) is the slope of the
line tangent at the point (a, b, f(a, b)) to the curve obtained
by intersecting the surface z = f(x, y) with the plane x = a.

o If we travel along this tangent line, then for every unit change
in the positive y-direction, there is a change of f,(a, b) units
in the z-direction.
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Differenciability

Tangency for scalar-valued functions of two variables

2. The partial derivative f,(a, b) is the slope of the line tangent
at the point (a, b, f(a, b)) to the curve obtained by
intersecting the surface z = f(x, y) with the plane x = a.

@ The tangent line is given in vector parametric form as:

Lo(t) = (a, b, f(a, b)) + t(0,1, £, (a, b))
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Differenciability

Tangency for scalar-valued functions of two variables

2. The partial derivative f,(a, b) is the slope of the line tangent
at the point (a, b, f(a, b)) to the curve obtained by
intersecting the surface z = f(x, y) with the plane x = a

@ Thus, a vector parallel to this tangent line is:

v=j+f(a bk
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Differenciability

Tangency for scalar-valued functions of two variables

y=b

li(t) = (a,b,f(a, b))+ t(1,0,f(a, b)), u=i+fi(a, bk

Ib(t) = (a,b,f(a,b))+t(0,1,f,(a,b)), v=]j+f,(a, bk

@ Both of the tangent lines must be contained in the plane
tangent to z = f(x, y) at (a, b, f(a, b)), if one exists.

@ A vector n normal to the tangent plane must be perpendicular
to both u and v.

V.
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Differenciability

Tangency for scalar-valued functions of two variables

|1(t) =
|2(t) =

@ A vector n normal to the tangent plane must be perpendicular
to both u and v

@ Therefore, we may take n to be:

n=uxv= —f(a b)i—f(a b)j+k
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Differenciability

Tangency for scalar-valued functions of two variables

We have the normal vector and a point of the tangent plane.

n = uxv=—f(a b)i—f,(ab)j+k P=(ab,f(ab))

@ So, the equation for the tangent plane through
(a, b, f(a, b)) with normal n is

(—f(a,b), —f,(a,b),1) - (x —a,y — b,z —f(a,b)) =0

or

—f(a, b)(x —a) — f,(a,b)(y — b) +z—f(a,b) =0
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Differenciability

Theorem 3.3

o If the graph of z = f(x, y) has a tangent plane at
(a, b, f(a, b)) then that tangent plane has equation

z = f(a, b) + f(a, b)(x — a) + f,(a, b)(y — b)
o Let define the function h(x, y) to be
h(x,y) = f(a, b) + f«(a, b)(x — a) + f,(a, b)(y — b)

@ Then h has the following properties
1. h(a, b) = f(a, b)
The values of h and f
are the same at (a, b)

2. gg(a b) = gf(a b) and ah(a b) = g;(a, b)
Partial derlvatlves of hand f

are the same at (a, b)
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Differenciability

Definition 3.4: Differentiability

o Let X be open in R?.

o Let f: X CR? — R be a scalar-valued function of two
variables.

o We say that f is differentiable at (a, b) € X if

o The partial derivatives £(a, b) and f,(a, b) exist , and
e The function

h(x,y) = f(a, b) + fi(a, b)(x — a) + f,(a, b)(y — b)
is a good linear approximation to f near (a, b):

f(Xv)/) — h(Xv}/) _

lim =0
()= (@b) [[(x, ) = (a, b)|
Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Differenciability

Definition 3.4: Differentiability

@ Mathematically is not necessary to suppose the partial
derivatives exists. It is enough to say that f is differentiable if
exists a linear function h that:

f(x,y) = h(x,y)
m =
(xy)—=(a.b) [|(x,¥y) — (a, b)||

0

e If f is differentiable at (a, b), then the equation z = h(x,y)

defines the tangent plane to the graph of f at the point
(a, b, f(a,b)).

If f is differentiable at all points of its domain,
then we say that f is differentiable

Marius A. Marinescu Métodos Matematicos de Bioingenieria 33 /54



The Derivative - Section 2.3
0000000000000000000000000000000800000000000000000000

Differenciability

Definition 3.4: Differentiability

Z

(x,y, f(x,y))

(x,y,h(x,y))

' (a, b, f(a, b))
X

h(x,y) = f(a, b) + fi(a, b)(x — a) + f,(a, b)(y — b)
o foy) —hixy)
(xy)=(ap) [|(x,y) — (a, b)||

e To say that z = f(x, y) has a tangent plane at (a, b, f(a, b))
is to say that f is differentiable at (a, b).
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Differenciability

Definition 3.4: Differentiability

| -
(x,y, f(x,y))

(x,y,h(x,y))

' (a, b, f(a, b))
X

h(x,y) = f(a, b) + f(a, b)(x — a) + f,(a, b)(y — b)
Iim f(X7.y)_h(X>y):0
(xy)=(ab) [[(x,y) = (a, b)||
@ The vertical distance between the graph of f and the

tangent plane z = h(x, y) must approach zero faster than
the point (x, y) approaches (a, b).
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Differenciability

The limit condition can be difficult to apply in practice. Hence, this
theorem could be useful.

Theorem 3.5

@ Suppose X is open in R?.

e If f: X C R? — R has continuous partial derivatives in a
neighbourhood of (a, b) in X, then f is differentiable at (a, b).

o Let f(x,y) = x>+ 2y?
@ Then

of of
Ix =2x and a—y =4y
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Differenciability

Example 6

o Let f(x,y) = x>+ 2y?
@ Thus, Theorem 3.5 implies that f is differentiable everywhere.

@ The surface z = x? 4+ 2y? must have a tangent plane at every
point ,

@ At the point (2, —1), for example, this tangent plane is given
by the equation:

z=6+4(x—2)—4(y+1) or 4x—4y—z=6
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Differenciability

Example 6
o Let f(x,y) = x>+ 2y?
@ At the point (2, —1), for example, this tangent plane is

z=6+4(x—2)—4(y+1) or 4x—4y—z=6
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Differenciability

Theorem 3.6

o If f: X CR? — R is differentiable at (a, b), then it is
continuous at (a, b).

Example 7

o Let the function f : X C R? — R be defined by

522 .
F(x,y) = X4_ﬁ/y4 if (x,y) # (0,0)
0 if (x,y) = (0,0)
@ The function f is not continuous at the origin, since

lim  f(x, does not exist
(>,)—(0,0) bey)

o However, f is continuous everywhere else in R2.

@ By Theorem 3.6, f cannot be differentiable at the origin.

N
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Differenciability

Theorem 3.6
o If f: X C R? — R is differentiable at (a, b), then it is
continuous at (a, b)

v

Example 7
o2 i
0 if (x,y) = (0,0)
@ Nonetheless, the partial derivatives of f do exist at the origin
since the partial functions are constant

0 of
0 of

The existence of partial derivatives alone is not enough
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Differenciability

Differentiation Remarks

We have the following hierarchy:

Continuous partials = Differentiable = Continuous function and
Partials exist (but not necessary continuous)

The inverse implications doesn't follow. To prove it you can take
this example for the first:

f(x) = x?sin(1/x), £(0) = 0.

And for the second:

f(x,y) =/vx+y2, £(0,0)=0

(continuous function).
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Matrix notation and differentiability in R”

Generalisation of scalar-valued function in R”

@ Let X be open in R".

@ Let f: X CR"” — R be a scalar-valued function.
o Leta=(a,a,...,a,) € X.

@ We say that f is differentiable at a if

o All the partial derivatives f,.(a),i =1,...,n, exist, and
e The function h: R” — R defined by

h(x) = f(a)+ £ (a)(a —a1) + f,(a) (e — 2)
+--+ £ (a)(xn — an)

is a good linear approximation to f near a

i T = h(x)

=0
x>a |x —al
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Matrix notation and differentiability in R”

Matrix Notation and Gradient

@ Let f: X CR"” — R be a scalar-valued function.
@ We define the gradient of f to be the vector ,

of Of of
Vf(x) = <8Xl, 87)(2" ,8X’7)

o Consequently,

Vf(a) = (f;q(a)’ sz(a)’ ooy f;(n(a))

@ Alternatively, we can use matrix notation and define the
derivative of f at a.

The derivative of f at a, Df(a), is the row matrix
whose entries are the components of V£ (a)

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Matrix notation and differentiability in R”

Matrix Notation and Gradient

@ Hence, vector notation allows us to rewrite equation

h(x) = f(a)+fq(a)(a — a1) + fi,(a) (2 — a2)
-+ f,(@)(xn — an)

o Compactly

h(x) = f(a) + Vf(a) - (x —a)

@ Thus, to say that h is a good linear approximation to f near a

means that
o F0)—[f@)+ VF(a) - (x—a)] _
x—a [(x —a)|l
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Matrix notation and differentiability in R”

Matrix of partial derivatives for vector-valued functions

@ Let X be open in R".

o Let f: X CR"” — R™ be a vector-valued function of n
variables.

@ We define the matrix of partial derivatives of f, denoted Df
and called the Jacobian Matrix. This is the m x n matrix

whose ijth entry is:
/ y of;
0
where f; : X CR” — R is the ith component function of f.
of o0 .. Ofi
0 0. 0.
Df(x1,x2,...,%n) = afq 8? 8?”
aXl BXQ BXn
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Matrix notation and differentiability in R”

Matrix of partial derivatives for vector-valued functions

of,  of 0
ox: ox: X
oh  oh on
aXl aX2 aXn

Df(XlaX27 7Xn) = .

Ox1 Oxo OXn

@ The ith row of Df is nothing more than Df;.

@ The entries of Df; are precisely the components of the
gradient vector Vf;.

@ In the case where m =1, Vf and Df mean exactly the same
thing.
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Matrix notation and differentiability in R”

Example 9

@ Suppose f : R® — R? is given by

f(x,y,2) = (xcosy + z, xy)

@ Then we have,

f(x,y,2) = (hlx,y,2), f(x,y,2))

where,
ﬂ(vavz) = Xcosy+z
h(x,y,z) = xy

@ Thus,
Oh Ofi  Oh cosy —xsiny 1
[5) I5) [5) -

Df(x,y,z) = 37}; ai; 37,52 = X 0

ox Jdy 0z Y
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Matrix notation and differentiability in R”

Definition 3.8: Grand Definition of Differentiability
@ Let X be open in R" and let a € X

@ Letf: X CR" — R™
@ We say that f is differentiable at a if

o Df(a) exists, and
e The function h : R" — R™ defined by

h(x) = f(a) + Df(a)(x — a)
is a good linear approximation to f near a
o [IF) = h(x) IF() — [f(@) + Df(a) - (x—a)] || _

I
= | =
o [x—a <o Ix—a)l

@ The term Df(a)(x — a) should be interpreted as the product
of the m x n matrix Df(a) and the n x 1 column matrix

[i—a1 xa—a - xa—an] |

0
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Theorem 3.9

If f: X CR" — R™ is differentiable at a, then it is continuous at
a.

Theorem 3.10

@ Suppose f : X C R" — R™ such that, for i=1,...,m and
j=1,...,n, all

of;

B

e Exist, and
@ Are continuous in a neighbourhood of a in X

@ Then, f is differentiable at a.
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Theorem 3.11

A function f : X C R" — R™ is differentiable at a € X

(in the sense of Definition 3.8)
if and only if

Each of its component functions f; : X CR" - R,i=1,...,m, is
differentiable at a

(in the sense of Definition 3.7)
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Example 10

o Suppose g : R® — {(0,0,0)} — R3 is given by

x2+y2+ 7%’

(o)
g(X,y,Z)I 5 o X, XZ

@ Then we have

g(X,y,Z) - (gl(X,y,Z),gg(X,y, Z),g3(X,y,Z))

where
3
g1(x,y,2) 2 +y2 422
g2(X7y7Z) = Xy
g3(X,y,Z) = Xz
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Example 10

g(x,y,z) =
gl(X;}/aZ) =
g2(X7yaZ) =
g3(X7yaZ) =
@ Thus
ofh  0fi  Ofi
..
Dg(x,y,2)= 5% 3¢ 97 |H
ofs 013 Ofy
ox 0Oy 0z

3
<x2+y2+z2’xy’xz>

3
X2 +y2 _|_22
Xy
XZ
—6x —6y —6z

(X2+y2+22)2 (X2+y2+22)2 (X2+y2+22)2

y X 0

z 0 X
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Example 10

—6x —by —6z
Iy2+22)2  (CHy2+222 Pty +22)?
Dg(x,y,z) = y X
z 0 X

@ Each of the entries of this matrix is continuous over
R3? —{(0,0,0)}

@ Hence, by Theorem 3.10, g is differentiable over its entire
domain.
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