Métodos Matemáticos de Bioingeniería
 Grado en Ingeniería Biomédica
 Lecture 6

Marius A. Marinescu
Departamento de Teoría de la Señal y Comunicaciones
Área de Estadística e Investigación Operativa
Universidad Rey Juan Carlos

15 de marzo de 2021

Outline

(1) The Derivative - Section 2.3

- Partial derivatives
- Differenciability
- Matrix notation and differentiability in \mathbb{R}^{n}

Outline

(1) The Derivative - Section 2.3

- Partial derivatives
- Differenciability
- Matrix notation and differentiability in \mathbb{R}^{n}

Derivative of a scalar-valued function of one variable

- Let $F: X \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a scalar-valued function of one variable.
- The derivative of F at a number $a \in X$ is

$$
F^{\prime}(a)=\lim _{h \rightarrow 0} \frac{F(a+h)-F(a)}{h}
$$

F is said to be differentiable at a when the limit in this equation exists

Definition 3.1: Partial Function

- Suppose $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar-valued function of n variables.
- Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ denote a point of \mathbb{R}^{n}.
- A partial function F with respect to the variable x_{i} is a one-variable function obtained from f by holding all variables constant except x_{i}.
- That is, we set x_{j} equal to a constant a_{j} for $j \neq i$.
- Then the partial function in x_{i} is defined by

$$
F\left(x_{i}\right)=f\left(a_{1}, a_{2}, \ldots, x_{i}, \ldots, a_{n}\right)
$$

Remark

- We usually do not replace the x_{j} 's $(j \neq i)$ by constants.
- Instead, we make a mental note.

Example 1

- Consider the function

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

- Then the partial functions with respect to x are given by

$$
F(x)=f\left(x, a_{2}\right)=\frac{x^{2}-a_{2}^{2}}{x^{2}+a_{2}^{2}}
$$

where a_{2} may be any constant.

- If, for example, $a_{2}=0$, then the partial function is

$$
F(x)=f(x, 0)=\frac{x^{2}}{x^{2}} \equiv 1
$$

Example 1

- Consider the function

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

- Then the partial functions with respect to x are given by

$$
F(x)=f(x, 0)=\frac{x^{2}}{x^{2}} \equiv 1
$$

- Geometrically, this partial function is the restriction of f to the horizontal line $y=0$.
- Since the origin is not in the domain of f, value 0 should not be taken to be in the domain of F.

Example 1

$$
\begin{aligned}
f(x, y) & =\frac{x^{2}-y^{2}}{x^{2}+y^{2}} \\
F(x) & =f\left(x, a_{2}\right)=\frac{x^{2}-a_{2}^{2}}{x^{2}+a_{2}^{2}}
\end{aligned}
$$

- The function f is defined on $\mathbb{R}^{2}-\{(0,0)\}$
- Its partial function F is defined on the x-axis minus the origin.

Definition 2.2: Partial Derivative

- The partial derivative of f with respect to x_{i} is the (ordinary) derivative of the partial function with respect to x_{i}.
- In the notation of Definition 3.1, partial derivative with respect to x_{i} is

$$
F^{\prime}\left(x_{i}\right)
$$

- Standard notations for the partial derivative of f with respect to x_{i} are:

$$
\frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i}}, \quad D_{x_{i}} f\left(x_{1}, \ldots, x_{n}\right) \quad \text { and } \quad f_{x_{i}}\left(x_{1}, \ldots, x_{n}\right)
$$

or

$$
\frac{\partial f}{\partial x_{i}}, \quad D_{x_{i}} f \quad \text { and } \quad f_{x_{i}}
$$

Definition 2.2: Analytic and Geometric interpretation

- Symbolically, we have

$$
\frac{\partial f}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h}
$$

- The partial derivative is the (instantaneous) rate of change of f when all variables, except the specified one, are held fixed.
- In the case where f is a (scalar-valued) function of two variables we can consider,

$$
\frac{\partial f}{\partial x}(a, b) \quad \text { and } \quad \frac{\partial f}{\partial y}(a, b)
$$

Geometric Interpretation of Partial Derivatives in \mathbb{R}^{2}

$$
\frac{\partial f}{\partial x}(a, b)
$$

- Geometrically it is the slope at the point $(a, b, f(a, b))$ of the curve obtained by intersecting
- The surface $z=f(x, y)$ with
- The plane $y=b$

Geometric Interpretation of Partial Derivatives in \mathbb{R}^{2}

$$
\frac{\partial f}{\partial y}(a, b)
$$

- Geometrically it is the slope at the point $(a, b, f(a, b))$ of the curve obtained by intersecting
- The surface $z=f(x, y)$ with
- The plane $x=a$

Example 2a

- Let

$$
f(x, y)=x^{2} y+\cos (x+y)
$$

- Then, if we imagine y to be a constant throughout the differentiation process, we have,

$$
\frac{\partial f}{\partial x}=2 x y-\sin (x+y)
$$

- If we imagine x to be a constant,

$$
\frac{\partial f}{\partial y}=x^{2}-\sin (x+y)
$$

Example 2b

- Let

$$
g(x, y)=\frac{x y}{\left(x^{2}+y^{2}\right)}
$$

- Then

$$
\begin{aligned}
& g_{x}(x, y)=\frac{\left(x^{2}+y^{2}\right) y-x y(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& g_{y}(x, y)=\frac{\left(x^{2}+y^{2}\right) x-x y(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

- Note that neither g nor its partial derivatives are defined at point $(0,0)$.

Example 3

- Occasionally, it is necessary to appeal explicitly to limits to evaluate partial derivatives.
- Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by

$$
f(x, y)= \begin{cases}\frac{3 x^{2} y-y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

1. For $(\mathbf{x}, \mathbf{y}) \neq(\mathbf{0}, \mathbf{0})$, we have

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{8 x y^{3}}{\left(x^{2}+y^{2}\right)^{2}} \\
\frac{\partial f}{\partial y} & =\frac{3 x^{4}-6 x^{2} y^{2}-y^{4}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Example 3

- Occasionally, it is necessary to appeal explicitly to limits to evaluate partial derivatives:
- Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by

$$
f(x, y)= \begin{cases}\frac{3 x^{2} y-y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

2. For $(x, y)=(0,0)$, we return to Definition 3.2

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0 \\
& \frac{\partial f}{\partial y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{-h-0}{h}=\lim _{h \rightarrow 0}-1=-1
\end{aligned}
$$

Outline

(1) The Derivative - Section 2.3

- Partial derivatives
- Differenciability
- Matrix notation and differentiability in \mathbb{R}^{n}

Tangency for scalar-valued functions of one variable

- Let $F: X \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a scalar-valued function of one variable.
- F is differentiable at a number $a \in X$ if the graph of the curve $y=F(x)$ has a tangent line at the point $(a, F(a))$.

- This tangent line is given by the equation:

$$
y=F(a)+F^{\prime}(a)(x-a)
$$

Tangency for scalar-valued functions of one variable

$$
y=F(a)+F^{\prime}(a)(x-a)
$$

- If we define the function $H(x)$ to be

$$
H(x)=F(a)+F^{\prime}(a)(x-a)
$$

- Then H has two properties:

1. $H(a)=F(a) \quad$ The line defined by $y=H(x)$ passes through the point $(a, F(a))$

Tangency for scalar-valued functions of one variable

$$
y=F(a)+F^{\prime}(a)(x-a)
$$

- If we define the function $H(x)$ to be

$$
H(x)=F(a)+F^{\prime}(a)(x-a)
$$

- Then H has two properties:

2. $H^{\prime}(a)=F^{\prime}(a)$
the line defined by $y=H(x)$ has the same slope at $(a, F(a))$ as the curve defined by $y=F(x)$

Tangency for scalar-valued functions of two variables

- Suppose $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a scalar-valued function of two variables.
- Suppose X is open in \mathbb{R}^{2} so the graph of f is a surface.
- What should the tangent plane to the graph of $z=f(x, y)$ at the point $(a, b, f(a, b))$ be ?

Tangency for scalar-valued functions of two variables

1. The partial derivative $f_{x}(a, b)$ is the slope of the line tangent at the point ($a, b, f(a, b)$) to the curve obtained by intersecting the surface $z=f(x, y)$ with the plane $y=b$

- If we travel along this tangent line, then for every unit change in the positive x-direction, there is a change of $f_{x}(a, b)$ units in the z-direction.

Tangency for scalar-valued functions of two variables

1. The partial derivative $f_{x}(a, b)$ is the slope of the line tangent at the point $(a, b, f(a, b))$ to the curve obtained by intersecting the surface $z=f(x, y)$ with the plane $y=b$

- The tangent line is given in vector parametric form as:

$$
\mathbf{I}_{1}(t)=(a, b, f(a, b))+t\left(1,0, f_{x}(a, b)\right)
$$

Tangency for scalar-valued functions of two variables

1. The partial derivative $f_{x}(a, b)$ is the slope of the line tangent at the point $(a, b, f(a, b))$ to the curve obtained by intersecting the surface $z=f(x, y)$ with the plane $y=b$

- Thus, a vector parallel to this tangent line is

$$
\mathbf{u}=\mathbf{i}+f_{x}(a, b) \mathbf{k}
$$

Tangency for scalar-valued functions of two variables

2. Analogously, the partial derivative $f_{y}(a, b)$ is the slope of the line tangent at the point $(a, b, f(a, b))$ to the curve obtained by intersecting the surface $z=f(x, y)$ with the plane $x=a$.

- If we travel along this tangent line, then for every unit change in the positive y-direction, there is a change of $f_{y}(a, b)$ units in the z-direction.

Tangency for scalar-valued functions of two variables

2. The partial derivative $f_{y}(a, b)$ is the slope of the line tangent at the point $(a, b, f(a, b))$ to the curve obtained by intersecting the surface $z=f(x, y)$ with the plane $x=a$.

- The tangent line is given in vector parametric form as:

$$
\mathbf{I}_{2}(t)=(a, b, f(a, b))+t\left(0,1, f_{y}(a, b)\right)
$$

Tangency for scalar-valued functions of two variables

2. The partial derivative $f_{y}(a, b)$ is the slope of the line tangent at the point $(a, b, f(a, b))$ to the curve obtained by intersecting the surface $z=f(x, y)$ with the plane $x=a$

- Thus, a vector parallel to this tangent line is:

$$
\mathbf{v}=\mathbf{j}+f_{y}(a, b) \mathbf{k}
$$

Tangency for scalar-valued functions of two variables

$$
\begin{aligned}
& \mathbf{I}_{1}(t)=(a, b, f(a, b))+t\left(1,0, f_{x}(a, b)\right), \quad \mathbf{u}=\mathbf{i}+f_{x}(a, b) \mathbf{k} \\
& \mathbf{I}_{2}(t)=(a, b, f(a, b))+t\left(0,1, f_{y}(a, b)\right), \quad \mathbf{v}=\mathbf{j}+f_{y}(a, b) \mathbf{k}
\end{aligned}
$$

- Both of the tangent lines must be contained in the plane tangent to $z=f(x, y)$ at $(a, b, f(a, b))$, if one exists.
- A vector \mathbf{n} normal to the tangent plane must be perpendicular to both \mathbf{u} and \mathbf{v}.

Tangency for scalar-valued functions of two variables

$$
\begin{aligned}
& \mathbf{I}_{1}(t)=(a, b, f(a, b))+t\left(1,0, f_{x}(a, b)\right), \quad \mathbf{u}=\mathbf{i}+f_{x}(a, b) \mathbf{k} \\
& \mathbf{I}_{2}(t)=(a, b, f(a, b))+t\left(0,1, f_{y}(a, b)\right), \quad \mathbf{v}=\mathbf{j}+f_{y}(a, b) \mathbf{k}
\end{aligned}
$$

- A vector n normal to the tangent plane must be perpendicular to both \mathbf{u} and \mathbf{v}
- Therefore, we may take \mathbf{n} to be:

$$
\mathbf{n}=\mathbf{u} \times \mathbf{v}=-f_{x}(a, b) \mathbf{i}-f_{y}(a, b) \mathbf{j}+\mathbf{k}
$$

Tangency for scalar-valued functions of two variables

We have the normal vector and a point of the tangent plane.

$$
\mathbf{n}=\mathbf{u} \times \mathbf{v}=-f_{x}(a, b) \mathbf{i}-f_{y}(a, b) \mathbf{j}+\mathbf{k} ; \quad P=(a, b, f(a, b))
$$

- So, the equation for the tangent plane through $(a, b, f(a, b))$ with normal \mathbf{n} is

$$
\left(-f_{x}(a, b),-f_{y}(a, b), 1\right) \cdot(x-a, y-b, z-f(a, b))=0
$$

or

$$
-f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)+z-f(a, b)=0
$$

Theorem 3.3

- If the graph of $z=f(x, y)$ has a tangent plane at $(a, b, f(a, b))$ then that tangent plane has equation

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

- Let define the function $h(x, y)$ to be

$$
h(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

- Then h has the following properties

1. $h(a, b)=f(a, b)$

The values of h and f
are the same at (a, b)
2. $\frac{\partial h}{\partial x}(a, b)=\frac{\partial f}{\partial x}(a, b)$ and $\frac{\partial h}{\partial y}(a, b)=\frac{\partial f}{\partial y}(a, b)$

Partial derivatives of h and f
are the same at (a, b)

Definition 3.4: Differentiability

- Let X be open in \mathbb{R}^{2}.
- Let $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a scalar-valued function of two variables.
- We say that f is differentiable at $(a, b) \in X$ if
- The partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ exist, and
- The function

$$
h(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

is a good linear approximation to f near (a, b) :

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)-h(x, y)}{\|(x, y)-(a, b)\|}=0
$$

Definition 3.4: Differentiability

- Mathematically is not necessary to suppose the partial derivatives exists. It is enough to say that f is differentiable if exists a linear function h that:

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)-h(x, y)}{\|(x, y)-(a, b)\|}=0
$$

- If f is differentiable at (a, b), then the equation $z=h(x, y)$ defines the tangent plane to the graph of f at the point $(a, b, f(a, b))$.

If f is differentiable at all points of its domain, then we say that f is differentiable

Definition 3.4: Differentiability

- To say that $z=f(x, y)$ has a tangent plane at $(a, b, f(a, b))$ is to say that f is differentiable at (a, b).

Definition 3.4: Differentiability

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)-h(x, y)}{\|(x, y)-(a, b)\|}=0 \\
& h(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
\end{aligned}
$$

- The vertical distance between the graph of f and the tangent plane $z=h(x, y)$ must approach zero faster than the point (x, y) approaches (a, b).

The limit condition can be difficult to apply in practice. Hence, this theorem could be useful.

Theorem 3.5

- Suppose X is open in \mathbb{R}^{2}.
- If $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous partial derivatives in a neighbourhood of (a, b) in X, then f is differentiable at (a, b).

Example 6

- Let $f(x, y)=x^{2}+2 y^{2}$
- Then

$$
\frac{\partial f}{\partial x}=2 x \quad \text { and } \quad \frac{\partial f}{\partial y}=4 y
$$

Example 6

- Let $f(x, y)=x^{2}+2 y^{2}$
- Thus, Theorem 3.5 implies that f is differentiable everywhere.
- The surface $z=x^{2}+2 y^{2}$ must have a tangent plane at every point,
- At the point $(2,-1)$, for example, this tangent plane is given by the equation:

$$
z=6+4(x-2)-4(y+1) \text { or } 4 x-4 y-z=6
$$

Example 6

- Let $f(x, y)=x^{2}+2 y^{2}$
- At the point $(2,-1)$, for example, this tangent plane is

$$
z=6+4(x-2)-4(y+1) \text { or } 4 x-4 y-z=6
$$

Theorem 3.6

- If $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at (a, b), then it is continuous at (a, b).

Example 7

- Let the function $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{4}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

- The function f is not continuous at the origin, since

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y) \text { does not exist }
$$

- However, f is continuous everywhere else in \mathbb{R}^{2}.
- By Theorem 3.6, f cannot be differentiable at the origin.

Theorem 3.6

- If $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at (a, b), then it is continuous at (a, b)

Example 7

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{4}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

- Nonetheless, the partial derivatives of f do exist at the origin since the partial functions are constant

$$
\begin{aligned}
& f(x, 0)=\frac{0}{x^{4}+0} \equiv 0 \Rightarrow \frac{\partial f}{\partial x}(0,0)=0 \\
& f(0, y)=\frac{0}{0+y^{4}} \equiv 0 \Rightarrow \frac{\partial f}{\partial y}(0,0)=0
\end{aligned}
$$

The existence of partial derivatives alone is not enough

Differentiation Remarks

We have the following hierarchy:

Continuous partials \Rightarrow Differentiable \Rightarrow Continuous function and Partials exist (but not necessary continuous)

The inverse implications doesn't follow. To prove it you can take this example for the first:

$$
f(x)=x^{2} \sin (1 / x), f(0)=0
$$

And for the second:

$$
f(x, y)=x y / \sqrt{x^{2}+y^{2}}, f(0,0)=0
$$

(continuous function).

Outline

(1) The Derivative - Section 2.3

- Partial derivatives
- Differenciability
- Matrix notation and differentiability in \mathbb{R}^{n}

Generalisation of scalar-valued function in \mathbb{R}^{n}

- Let X be open in \mathbb{R}^{n}.
- Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar-valued function.
- Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in X$.
- We say that f is differentiable at a if
- All the partial derivatives $f_{x_{i}}(a), i=1, \ldots, n$, exist, and
- The function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
h(\mathbf{x})= & f(\mathbf{a})+f_{x_{1}}(\mathbf{a})\left(x_{1}-a_{1}\right)+f_{x_{2}}(\mathbf{a})\left(x_{2}-a_{2}\right) \\
& +\cdots+f_{x_{n}}(\mathbf{a})\left(x_{n}-a_{n}\right)
\end{aligned}
$$

is a good linear approximation to f near a

$$
\lim _{x \rightarrow \mathbf{a}} \frac{f(\mathbf{x})-h(\mathbf{x})}{\|\mathbf{x}-\mathbf{a}\|}=0
$$

Matrix Notation and Gradient

- Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar-valued function.
- We define the gradient of f to be the vector,

$$
\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

- Consequently,

$$
\nabla f(\mathbf{a})=\left(f_{x_{1}}(\mathbf{a}), f_{x_{2}}(\mathbf{a}), \ldots, f_{x_{n}}(\mathbf{a})\right)
$$

- Alternatively, we can use matrix notation and define the derivative of f at a.

The derivative of f at $\mathbf{a}, \operatorname{Df}(\mathbf{a})$, is the row matrix whose entries are the components of $\nabla f(\mathbf{a})$

Matrix Notation and Gradient

- Hence, vector notation allows us to rewrite equation

$$
\begin{aligned}
h(\mathbf{x})= & f(\mathbf{a})+f_{x_{1}}(\mathbf{a})\left(x_{1}-a_{1}\right)+f_{x_{2}}(\mathbf{a})\left(x_{2}-a_{2}\right) \\
& +\cdots+f_{x_{n}}(\mathbf{a})\left(x_{n}-a_{n}\right)
\end{aligned}
$$

- Compactly

$$
h(\mathbf{x})=f(\mathbf{a})+\nabla f(\mathbf{a}) \cdot(\mathbf{x}-\mathbf{a})
$$

- Thus, to say that h is a good linear approximation to f near a means that

$$
\lim _{x \rightarrow \mathbf{a}} \frac{f(\mathbf{x})-[f(\mathbf{a})+\nabla f(\mathbf{a}) \cdot(\mathbf{x}-\mathbf{a})]}{\|(\mathbf{x}-\mathbf{a})\|}=0
$$

Matrix of partial derivatives for vector-valued functions

- Let X be open in \mathbb{R}^{n}.
- Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a vector-valued function of n variables.
- We define the matrix of partial derivatives of \mathbf{f}, denoted $D \mathbf{f}$ and called the Jacobian Matrix. This is the $m \times n$ matrix whose ijth entry is:

$$
\frac{\partial f_{i}}{\partial x_{j}}
$$

where $f_{i}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the i th component function of \mathbf{f}.

$$
D \mathbf{f}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

Matrix of partial derivatives for vector-valued functions

$$
D \mathbf{f}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

- The i th row of $D \mathbf{f}$ is nothing more than $D f_{i}$.
- The entries of $D f_{i}$ are precisely the components of the gradient vector ∇f_{i}.
- In the case where $m=1, \nabla \mathbf{f}$ and Df mean exactly the same thing.

Example 9

- Suppose $\mathbf{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is given by

$$
\mathbf{f}(x, y, z)=(x \cos y+z, x y)
$$

- Then we have,

$$
\mathbf{f}(x, y, z)=\left(f_{1}(x, y, z), f_{2}(x, y, z)\right)
$$

where,

$$
\begin{aligned}
f_{1}(x, y, z) & =x \cos y+z \\
f_{2}(x, y, z) & =x y
\end{aligned}
$$

- Thus,

$$
D \mathbf{f}(x, y, z)=\left[\begin{array}{lll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos y & -x \sin y & 1 \\
y & x & 0
\end{array}\right]
$$

Definition 3.8: Grand Definition of Differentiability

- Let X be open in \mathbb{R}^{n} and let $\mathbf{a} \in X$
- Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
- We say that \mathbf{f} is differentiable at \mathbf{a} if
- $D f(\mathbf{a})$ exists, and
- The function $\mathbf{h}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by

$$
\mathbf{h}(\mathbf{x})=\mathbf{f}(\mathbf{a})+D \mathbf{f}(\mathbf{a})(\mathbf{x}-\mathbf{a})
$$

is a good linear approximation to f near a

$$
\lim _{x \rightarrow \mathbf{a}} \frac{\|\mathbf{f}(\mathbf{x})-\mathbf{h}(\mathbf{x})\|}{\|\mathbf{x}-\mathbf{a}\|}=\lim _{x \rightarrow \mathbf{a}} \frac{\|\mathbf{f}(\mathbf{x})-[\mathbf{f}(\mathbf{a})+D \mathbf{f}(\mathbf{a}) \cdot(\mathbf{x}-\mathbf{a})]\|}{\|(\mathbf{x}-\mathbf{a})\|}=0
$$

- The term $\operatorname{Df}(\mathbf{a})(\mathbf{x}-\mathbf{a})$ should be interpreted as the product of the $m \times n$ matrix $D \mathbf{f}(\mathbf{a})$ and the $n \times 1$ column matrix

$$
\left[\begin{array}{llll}
x_{1}-a_{1} & x_{2}-a_{2} & \cdots & x_{n}-a_{n}
\end{array}\right]^{T}
$$

Theorem 3.9

If $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at \mathbf{a}, then it is continuous at a.

Theorem 3.10

- Suppose $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that, for $i=1, \ldots, m$ and $j=1, \ldots, n$, all

$$
\frac{\partial f_{i}}{\partial x_{j}}
$$

- Exist, and
- Are continuous in a neighbourhood of \mathbf{a} in X
- Then, \mathbf{f} is differentiable at \mathbf{a}.

Theorem 3.11

A function $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $\mathbf{a} \in X$
(in the sense of Definition 3.8)
if and only if

Each of its component functions $f_{i}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, m$, is differentiable at a
(in the sense of Definition 3.7)

Example 10

- Suppose $\mathbf{g}: \mathbb{R}^{3}-\{(0,0,0)\} \rightarrow \mathbb{R}^{3}$ is given by

$$
\mathbf{g}(x, y, z)=\left(\frac{3}{x^{2}+y^{2}+z^{2}}, x y, x z\right)
$$

- Then we have

$$
\mathbf{g}(x, y, z)=\left(g_{1}(x, y, z), g_{2}(x, y, z), g_{3}(x, y, z)\right)
$$

where

$$
\begin{aligned}
g_{1}(x, y, z) & =\frac{3}{x^{2}+y^{2}+z^{2}} \\
g_{2}(x, y, z) & =x y \\
g_{3}(x, y, z) & =x z
\end{aligned}
$$

Example 10

$$
\begin{aligned}
\mathbf{g}(x, y, z) & =\left(\frac{3}{x^{2}+y^{2}+z^{2}}, x y, x z\right) \\
g_{1}(x, y, z) & =\frac{3}{x^{2}+y^{2}+z^{2}} \\
g_{2}(x, y, z) & =x y \\
g_{3}(x, y, z) & =x z
\end{aligned}
$$

- Thus
$D \mathbf{g}(x, y, z)=\left[\begin{array}{ccc}\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z_{1}} \\ \frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial z} \\ \frac{\partial f_{3}}{\partial x} & \frac{\partial f_{3}}{\partial y} & \frac{\partial f_{3}}{\partial z}\end{array}\right]=\left[\begin{array}{ccc}\frac{-6 x}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} & \frac{-6 y}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} & \frac{-6 z}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} \\ y & x & 0 \\ z & 0 & x\end{array}\right]$

Example 10

$$
D \mathbf{g}(x, y, z)=\left[\begin{array}{ccc}
\frac{-6 x}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} & \frac{-6 y}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} & \frac{-6 z}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} \\
y & x & 0 \\
z & 0 & x
\end{array}\right]
$$

- Each of the entries of this matrix is continuous over $\mathbb{R}^{3}-\{(0,0,0)\}$
- Hence, by Theorem 3.10, \mathbf{g} is differentiable over its entire domain.

